Incorporating information from adults into pediatric trial design: A Case Study of Guillan-Barré Syndrome

Steven Goodman, MD, PhD
Johns Hopkins University
sgoodman@jhmi.edu

FDA Bayes workshop, 5/20/04

The Question

 Is intravenous immune globulin (IVIg) of equal or superior efficacy to plasma exchange in treatment of pediatric Guillan-Barré syndrome (GBS)?

Background: Pediatric GBS

- An acute polyneuropathy of uncertain etiology, likely due to molecular mimicry, characterized by weakness, sensory loss, and areflexia.
- Validated Grading Scale:
 - Grade 0: Normal
 - Grade 1: Minor signs or symptoms
 - Grade 2: Able to walk 5 meters w/o support
 - Grade 3: Walk 5 meters with support
 - Grade 4: Chairbound
 - Grade 5: On ventilator for all or part of day
 - Grade 6: Dead

Background: Pediatric GBS

- Rare: 3-10/Million annually
- 200-600 cases/year in US <17 yrs., Stage 3/4 about 50% of total.
- Almost all children recover with minimal sequelae.
- Children in Grades 1-2 are typically not hospitalized. Grades 3-5 all are hospitalized.

Adult vs. Pediatric GBS

 No known difference in pathophysiology or clinical course, except that children recover more quickly, almost never die, and have fewer serious sequelae.

Plasma Exchange (PE)

- Involves removing blood from body, removing plasma component and returning it, reconstituted with saline and/or albumin.
- Requires a central catheter and usually inpatient care.
- Costs ca \$10K per full course of treatment.
- Mechanism of action is unclear; assumed to be removal of antibodies and cytokines.
- Most serious side effects are bleeding, infection, pneumothorax, and cardiovascular instability.

IV Immune Globulin (IVIg)

- Involves IV infusions once daily for 5 days.
- Cost is similar to plasmapheresis.
- Mechanism of action is unclear.
- Main side effects are flu-like symptoms or allergy, reduced by pretreatment or slowing infusion.
- Therapeutic equivalence of different formulations likely but not certain.

Goal of Treatment

 Accelerate recovery to reduce time in hospital, on a ventilator and unable to walk. In adults, treatment reduces hospital costs.

What do we know in adults?: PE vs. Placebo

 Two RCTs of plasma exchange versus placebo showed identical effects on median time to unaided walking (Time to grade 2):

Study	N	Placebo	PE	HR	P-value
	(age)				
French GBS Study (1985)	245 (>16)	111 d	70 d	0.63	<0.001
GBS Study Group (1985)	220 (>12)	85 d	53 d	0.62	<0.001

What do we know in children?

- Five case series/natural history studies of untreated pediatric GBS patients
- Four case series of children treated with PE compared to historical controls.

What do we know in children?: Natural history studies

<u>Author</u>	<u>N</u>	Median	<u>Mean</u>	<u>S.D.</u>
Korinthenberg 1996	56	40 days	45.4	24.7
Paradiso 1999	37		58.7	44.0
Epstein 1990	14		60.2	43.6
Lamont 1991	18	43 days		
Graf 1999	9		50.0	29.0

Weighted mean: 48 days, CI: 43 to 52

What do we know in children?: PE vs. Historical Control Studies

<u>Author</u>	Mean treated (N)	Mean untreated (N)	<u>HR</u>	<u>S.D.</u>
Epstein 1990	24 (9)	60 (14)	0.4	0.17-0.93
Lamont 1991	17 (6)	43 (18)	0.4	0.15 - 0.99
Jansen 1993	16 (8)	29 (11)	0.55	0.23 -1.37
Graf 1999	76 (6)	50 (9)	1.52	0.54 - 4.3
TOTAL		RE model	0.58	0.32-1.0

Parameters for planning pediatric study

- Non-inferiority study because:
 - Strong prior evidence that PE and IVIg are nearly equivalent.
 - Because IVIg therapy is less morbid, it would be preferred to PE with equal or slightly lower efficacy for QOL endpoint (i.e. time to walking).
- Estimate that median time to ambulation on PE is 24 days.

Parameters for planning pediatric study

- Chose non-inferiority margin of 7 days (i.e. median time 31 days on IVIg)
- Corresponds to HR=1.29 (=31/24)

Constructing prior for pediatric trials

- Since the meta-analytic HR for the adult trials is 0.91, CI 0.75 to 1.1, a pediatric trial would presumably not be needed if we thought the results in adults directly applied to kids.
- Downweight adult prior by a factor of about 2, and center at 1.0, to not introduce initial bias.
- Prior is HR=1.0, CI 0.6 to 1.67
- 2.5% prior probability that IVIg would extend time to walking by 2 weeks, 14% prior probability that it would be extended by 1 week over PE.
- Conversely, 14% prior that IVIg would decrease time to walking by 5.5 days, 2.5% on 9 day decrease.

Other prior facts

- Initial 86% probability that IVIg was not more than 7 days inferior.
- This prior is roughly equivalent to an RCT of 72 children showing IVIg-PE equivalence.
- The degree of evidence we will want is equivalence to a Bayes Factor of (95/5)÷(86/14) = 3

Design of trial with prior

 Stopping criteria: Stop when probability of non-inferiority exceeds 95%. Monitor after every 40 patients, max 160.

	True Median difference				
Sample size	0	7 days	≤ 7 days, using prior	>7 days, using prior	
40	20%	4%	29%	2%	
80	40%	8%	50%	3%	
120	56%	10%	60%	4.7%	
160	67%	12%	77%	5.2%	

Other sample size approaches

- Sample size calculation for a superiority study with a MID of 1 week, 80% power, 2-sided alpha=5%, N-450.
- Sample size for a "non-inferiority study," 80% power, N=750.
- Sample size for superiority study with MID=14 days (i.e. HR = 38/24= 1.6) = 160.

What have we gained?

- More certainty with fewer children based on a plausible, evidence-based prior.
- A way of making adult evidence count for kids, yet still require pediatric experimentation.
- A more "ethical" approach to testing in children.
- Allow flexibility in design, because all Bayesian designs can be adaptive, i.e. responsive to accumulating data.

What have we gained? (cont.)

- Way of formulating problem that encourages meaningful discussion among all stakeholders.
 - Degree of certainty needed after trial.
 - Degree of certainty before trial
 - ✓ quality, quantity, and relevance of adult data to children.
 - quality and quantity of children's data.
 - Difference of interest. (Posterior probability curve can be used to calculate the probability of any difference.)
- Formality and explicitness about critical issues that persons using standard statistical approaches either hide, are unaware of, or deal with informally or in ad hoc ways.

Question

Can one apply a Bayesian approach where the a priori data comes from an adult patient population and the new data comes from a pediatric population?

Answer

- Yes, but only if the adult data is deemed relevant or informative.
- More empirical studies of this relevance need to be conducted, and ongoing.